Tilde's Machine Translation Systems for WMT 2017

نویسندگان

  • Marcis Pinnis
  • Rihards Krislauks
  • Toms Miks
  • Daiga Deksne
  • Valters Sics
چکیده

The paper describes Tilde’s EnglishLatvian and Latvian-English machine translation systems for the WMT 2017 shared task in news translation. Both constrained and unconstrained systems are described. Our constrained systems were ranked as the best performing systems according to the automatic evaluation results. The paper gives details to how we pre-processed training data, the NMT system architecture that we used for training the NMT models, the SMT systems and their usage in NMT-SMT hybrid system configurations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The JHU Machine Translation Systems for WMT 2017

This paper describes the Johns Hopkins University submissions to the shared translation task of EMNLP 2017 Second Conference on Machine Translation (WMT 2017). We set up phrase-based, syntax-based and/or neural machine translation systems for all 14 language pairs of this year’s evaluation campaign. We also performed neural rescoring of phrasebased systems for English-Turkish and English-Finnish.

متن کامل

XMU Neural Machine Translation Systems for WMT 17

This paper describes the Neural Machine Translation systems of Xiamen University for the translation tasks of WMT 17. Our systems are based on the Encoder-Decoder framework with attention. We participated in three directions of shared news translation tasks: English→German and Chinese↔English. We experimented with deep architectures, different segmentation models, synthetic training data and ta...

متن کامل

NRC Machine Translation System for WMT 2017

We describe the machine translation systems developed at the National Research Council of Canada (NRC) for the RussianEnglish and Chinese-English news translation tasks of the Second Conference on Machine Translation (WMT 2017). We conducted several experiments to explore the best baseline settings for neural machine translation (NMT). In the RussianEnglish task, to our surprise, our bestperfor...

متن کامل

SYSTRAN Purely Neural MT Engines for WMT2017

This paper describes SYSTRAN’s systems submitted to the WMT 2017 shared news translation task for English-German, in both translation directions. Our systems are built using OpenNMT1, an opensource neural machine translation system, implementing sequence-to-sequence models with LSTM encoder/decoders and attention. We experimented using monolingual data automatically back-translated. Our resulti...

متن کامل

Stanford University ' s Submissions to the WMT 2014 Translation

We describe Stanford’s participation in the French-English and English-German tracks of the 2014 Workshop on Statistical Machine Translation (WMT). Our systems used large feature sets, word classes, and an optional unconstrained language model. Among constrained systems, ours performed the best according to uncased BLEU: 36.0% for French-English and 20.9% for English-German.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017